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INTRODUCTION 

An understanding of the interaction of the tropical oceans with the atmosphere is important for 
the solution of problems concerning the varied time-period changes in the oceans and atmosphere. 
(Zipser, 1969; U.S. Committee for the GARP, 1969; Rasool and Hogan, 1969). Large-scale oceano­
graphic processes over the tropical Pacific Ocean have been described by eminent researchers 
(Bjerknes, 1961, 1966a, 1966b, and 1969; Bjerknes et al., 1969; Berlage, 1966; Wyrtki, 1966; Roden 
and Reid, 1961;Roden, 1962 and 1965; Shell, 1965). These climatological and analytical studies 
were made in the last decade when there was a shortage of basic oceanographic data over large areas 
of the Pacific Ocean. Research efforts conducted during the 1960 STEP-I Expedition (Wooster, 1961b), 
the 1963 to 1965 Trade Wind Zone Oceanography Pilot Study (Seckel, 1970), and the 1967 to 1968 
EASTROPAC cruises (U.S. Department of Commerce, 1970a) are relatively recent attempts to fill this 
serious data gap. 

Bjerknes (1969) described the relationship between the increased monthly Canton Island rainfall 
and the presence of local warm sea surface temperatures (SST’s) and suggested that the strong inter-
annual variability of SST’s and rainfall observed at Canton Island could be applied to the eastern 
tropical Pacific Ocean. On the other hand, Kmeger and Gray (1969) analyzed 5 years (1962 to 
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1967) of winter (December to February) SST's over the eastern tropical Pacific. They found decreased 
tropical cloudiness in the winter of 1966 through the use of satellite data in the presence of anoma­
lously warm SST's. Widespread tropospheric subsidence was suggested as the cause for this suppressed 
cloudiness. In order to gain a comprehensive insight into these complex air-sea interactions, we will 
examine long-term variations of satellite-derived tropical cloudiness, SST's, tropical Pacific island 
rainfall, and also the strength of the semipermanent anticyclones in the northern and southern Pacific 
Ocean between latitudes 30"N and 40"N and 30"s and 40"S, respectively. 

OCEAN-ATMOSPHERE INTERACTION CONSIDERATIONS 

The ultimate source of the energy that drives the atmosphere and the oceans is the differential 
heating of the earth's surface by the sun. The immense amount of heat capacity of the oceans, which 
constitute about 70 percent of the earth's surface, acts as a huge flywheel for this coupled system. In 
general, the movement of the major Pacific Ocean current systems [Figure 1 (U.S. Navy, 1966)J are 
caused by the wind stress on the water, the downslope movement of low-density water (which is 
dynamically higher than high-density water), the blockage of the currents by land masses, and the 
earth's rotation (Svedrup, 1947; Malkus, 1962; U.S. Navy, 1962; Stewart, 1969). Since the large 
North Pacific anticyclone is the major pressure source driving the surface currents in the northeastern 
temperate and tropical Pacific Ocean, the region 30"N to 40"N, 180" to 130"W was selected for 
analysis. This area encompasses the range of movement of the anticyclone's central pressure during 
its yearly trek north and south in synchronization with the sun's seasonal migration. Table 1 (Crutcher 
and Meserve, 1970) lists the monthly long-term mean central position of the North Pacific anticyclone. 
Roden and Reid (1961) had noted the importance of the strength of the Aleutian Low in the winter 
months and its close relation to oceanic SST anomalies. However, for this study, only the climato­
logical variation of the North Pacific High will be examined. 

The sea-level pressure (SLP) and the 700-mbTable 1 -Monthly long-term mean central 
heights over the North Pacific High were collectedposition of the North Pacific anticyclone. 
for the period 1949 to 1970. The monthly surface 

Month Mean Position 
.- - .  - .  .. pressure data from 5" latitude-longitude intersec-

January 30"N 138"W tions were obtained from microfilmed Northern 
February 31"N 137"W Hemisphere surface maps provided by the National 
March 35"N 150"W Climatic Center, National Oceanic and Atmospheric
April 34"N 165"W Administration (NOAA), Asheville, North Carolina. 
May 33"N 155"W The monthly mean 700-mb height anomalies at the 
June 33"N 146"W same intersections were obtained from the Monthly 
J d Y  38"N 149"W Weather Review (US.  Weather Bureau, 1949 to 
August 39"N 151"W 1970). Figure 2 shows the close pattern similarity 
September 34"N 155"W between these two levels from 12-month running
October 33"N 141"W means during the 22-year period (Y = +0.80, with 
November 31"N 136"W zero lag). The symbol Y will be used in the paper 
December 30"N 139"W to represent the correlation coefficient. 
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Figure 1-Surface currents of the Pacific Ocean during July (U.S. Navy, 1966). 

Roden and Reid (1961) and Reid et al. (1958) had noted that the upwelling and cold-water 
advection in the California Current (Figure 1) was coupled with the northerly winds, which for the 
most part are driven by the North Pacific High. In addition, an areal coherence of monthly SST 
anomalies of the same sign and approximate amplitude occurred almost simultaneously from 40"N to 
20"N in the California Current. In order to allow analysis of a longer series of data, monthly SST's 
were obtained from U.S. Coast and Geodetic Survey records from 1925 to 1970 for the piers and 
recording sites along the west coast (Figure 3). Long-term means and monthly anomalies were 
assembled from these data. A single monthly average of all coastal SST anomalies was then made, 
and 12-month running means were plotted (Figure 4a). Both the monthly surface pressure and the 
700-mb height anomalies yielded r of only -0.68, with +6- to +%month lead time with these coastal 
SST's (Le., increases in 700-mb heights preceded the corresponding decreases in SST's by 6 to  8 
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Figure 2-(a) Northeast Pacific (30°N to 40°N, 130"W to 180') SLP anomalies, 12-month running mean; 
(b) Northeast Pacific (30"N to 40°N, 130"W to 180') 700" height anomalies, 12-month running mean. 
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Figure 3-Location of surface water temperature stations along the 
United States west coast. 
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Figure 4-(a) 	 United States west coast station (33'N to 40'N) SST anomalies, 12-month running mean; (b) tropical 
Pacific Ocean (10'N to 20'N, 100"W to 180') SST anomalies, 12-month running mean. 
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Figure 5-A comparison of 12-month running means of Northeast Pacific (30"N to 40"N. 130"W to 180") 700-mb 
height anomalies and tropical Pacific (0" to 10"N, 100"W to 180') SST anomalies. The SST plot is lagged -6 months 
on this graph. 

months). The plot (Figure 4b) of the 12-monthly mean of the 1O"N to 20°N, 1OO"W to 180" SST 
anomalies over the extension of the California Current (Figure 1) showed a close correlation, as was 
expected, with the United States west coast data (Y = +0.87, with -1-month lag). The source of the 
tropical ocean data will be described later. 

A comparison was made of the Northeast Pacific 700-mb height anomalies and the SST anomalies 
from 30"N to 10"s and from 180" to the continental shorelines, and surprisingly good relations [Y = 
-0.70 to -0.74, with +5 to +9-month lead (i.e., increases in 700-mb heights preceded the correspond­
ing decreases in SST's by 5 to 9 months)] were noted. Figure 5 shows this comparison, with the 0"N 
to 10"N SST anomalies slipped 6 months in time. High pressure was related to cool SST anomalies 
and low pressure to warm SST anomalies. A more complete discussion of these statistical results will 
be made later. 
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A similar analysis was made for the Southern Hemisphere in order to obtain the long-term varia­
tion of the Peru Current, a northward-flowing current along the west coast of South America (Figure 
1). Historical monthly SST data were obtained from U.S. Coast and Geodetic Survey records from 
1950 to 1967 for the South American west coast stations shown in Figure 6. A monthly average of 
all station SST anomalies was made, and is shown in Figure 7a. Figure 7b shows the 12-month running 
means of these anomalies and confirms the close coupling (Y = +0.90, with +I-month lead) that should 
exist between the Peru Current m d  its extension from 0" to lo's, 80"W to 180" (Figure 1) (Wyrtki, 
1965). 

Because of the sparsity of South Pacific SLP and 700-mb data, the long period of SLP records 
for Juan Fernandez Island was utilized to investigate the South Pacific anticyclone. The data for Juan 
Fernandez Island (34"S, 80"W) are not completely representative of the South Pacific High during 
June to August, a period when the area is affected by disturbances in the extratropical westerlies 
(Bjerknes, 1966b). Table 2 lists the monthly long-term mean central position of the South Pacific 
High (Taljaard et al., 1969). 

Figure 8 shows the agreement between the SST data for the extension of the Peru Current 0" to 1OoS, 
180" to 1OO"W and the Juan Fernandez Island SLP data (Y = -0.63, with -2-month lag). Note the drop 
in Juan Fernandez Island surface pressure, which relates the abnormal weakening in the trade-wind 
circulation and the resultant anomalous SST warming during 1951, 1953, 1957 to 1961, 1963, 1965, 
and 1968 to 1969. The work of Bjerlmes ( 1961) and Wooster (196 1a) tends to  support this interpre-
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MONTT ,diu 

ZEALAND400sf__L__60's1 4 0 9  16 
E 180' 14oow 120ow 1 ooow 8O0W 6OoW 

Figure 6-Location of South American west coast SST recording stations and the tropical Pacific island rainfall 
recording network. 
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Figure 7 4 a )  South American west coast station (0" to 40"s) SST anomalies (monthly mean); (b) a comparison 
of 12-month running means of South American west coast station (0" to 40"s) and tropical Pacific Ocean 
(0" to IOOS, 80"W to 180") SST anomalies. 
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Figure 8-A comparison of 12-month running means of tropical Pacific Ocean (0" to IO'S, 8OoW to 180') SST 
anomalies and Juan Fernandez Island SLP. 
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Table 2-Monthly long-term mean central position of the 
South Pacific High. 

Month 

January 
February 
March 
April 
May 
June 
July 
August 
September 
October 
November 
December 

_ _ _ ~  

_ _  .- .. .. - __ 

Mean Position 

3 1"s 89"W 
3 1"s 90"W 
30"s 90"W 
30"s 88"W 
27"s 85"W 
25"s 90"W 
26"s 90"W 
27"s 88"W 
28"s 89"W 
29"s 88"W 
30"s 89"W 
30"s 89"W 

- .  ­

tation between the strength of the trade winds and equatorial upwelling in the central tropical Pacific 
Ocean. Berlage (1966) noted that SLP differences between Juan Fernaiidez Island and Santiago ap­
pear to relate more completely to changes in the Peru Current. This premise will be tested in a later 
study. 

SATELLITE-DERIVED CLOUDINESS AND SEA SURFACE TEMPERATURE DATA 

With the launching of the TIROS, ESSA, Nimbus, ITOS, and ATS meteorological satellites in the 
last decade, it is now possible to view tropical cloudiness on a day-to-day, weekly, monthly, seasonal, 
and yearly basis over vast oceanic regions of the world* ** (Atkinson and Sadler, 1970; Leese et al., 
1970; Miller, 1971;U.S. Department of Commerce, 1970b; Allison et al., 1969; Allison, 1971; 
Bjerknes et al., 1969; Sadler, 1968; Sherr et al., 1968; Taylor et al., 1968; Wallace, 1970; Anderson et 
al., 1969; Suomi and Vonder Haar, 1970). 

Only recently has the time span of satellite data become extensive enough to allow satisfactory 
viewing of the longer-term variations in cloud amounts over the tropical Pacific Ocean. Figure 9 shows 
the monthly variation in cloud cover (in percent of area covered by 2 6/ 10 cloudiness) derived from 
satellite television analyses over the eastern tropical Pacific from 0' to 30°N, 180" to 100"W from 
August 1962 to October 1970 (only the January, April, August, and October monthly cloudiness 
amounts were computed). Examples of monthly cloudiness minimum and maximum periods, April 

*V. V. Salomonson, "Cloud Statistics in Earth Resources Technology Satellite (ERTS) Mission Planning", GSFC Document X-62269­
386. August 1969. 

**J. Kornfield and A. Hasler, "Photographic Cloud Averages", WeatherMotions From Space, University of Wisconsin, Madison, 
Wisconsin, in press. 
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Figure 9-(a) A histogram of satellite-derived cloudiness (percent of area covered by 2 6/10 cloudiness) from 
0" to 30°N, 1OO"W to 180". from 1962 to 1970; (b) mean cloud amount (in tenths) derived from TIROS 9 neph­
analysis, April 1965; (c) mean cloud amount (in tenths) derived from ESSA 7 and 9 nephanalysis, April 1969. 

1965 and 1969, respectively, are shown in parts (b) and (c) of this figure. These cloudiness amounts 
were derived from daily television nephanalyses, which were produced by the National Environmental 
Satellite Service of NOAA. The daily charts were composited from TIROS, ESSA, and ITOS television 
data for four to five orbits. Cloud amounts, in tenths, were weighted and hand plotted in 2" latitude-
longitude squares and averaged to produce monthly cloud values (Godshall, 1968; Godshall et al., 
1969). 

In order to determine the relationship that could exist between tropical cloudiness and SST's, 
it was decided to study the monthly SST data for the tropical Pacific Ocean, published by the renamed 
National Marine Fisheries Services, NOAA (Renner, 1962 to  1970). Since ship SST data were sparse in 
the tropical ocean, 3-month means of the data were produced with the technique described by Krueger 
and Gray (1 969). Long-term means, obtained from the U.S. Naval Oceanographic Office (1969) were 
used for the anomaly data base at the center of the 5' latitude-longitude squares from 20"N to 10°S, 
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180" to 80"W. Charts showing these 3-month SST anomalies (in K) from 1962 to 1970 are given in 
Appendix A. The area covered by a positive SST anomaly was planimetered and weighted by the mean 
SST anomaly for each latitude band. Histograms of the monthly cloud cover and 3-month SST varia­
tions are given in Appendix B. 

In order to extend our SST data base back prior to 1962, an atlas of monthly SST's (Eber et al., 
1968) was processed by the technique described previously and reduced to 3-month SST anomalies 
for the period 1949 to 1962. A complete atlas of these anomaly charts is given in Appendix A. 

Figures 10 and 11,which summarize the results of this atlas, show the seasonal SST anomalies 
from 1949 to 1970 for 1O"N to 20"N, 0" to 1O"N, 0" to 1O"S, 5"N to 15"N, and 5"N to 5"s obtained 
from all available data. The 5"N to 15"N band covers the Intertropical Zone of Convergence, the 
Equatorial Counter Current, and the California Current extension, and the 5"N to 5"s band covers the 
Peru Current extension (Wyrtki, 1965). Note the warm periods for the regions within 20"N and 10"s: 
1951, 1953, 1957 to 59, 1960 to 6 1, 1963, 1965, 1968 to 69. Note also the gross similarity with the 
yearly SST anomaly for the 20"N to 30"N band across the entire Pacific Ocean (Namias, 1970). 
Figures 12 and 13 show the percent of area covered by a positive anomaly for regions within 20"N and 
10"s. A good relationship was noted between these two types of SST analyses (i.e., Figures 10 through 
13). 

In previous studies, Bjerknes (1966a, 1969, and 1970) had noted the importance of the Canton 
Island SST's: They should relate strongly to the eastern tropical Pacific Ocean circulation. Figure 14 
confirms the fact that Canton Island SST anomalies are in good agreement with and very representa­
tive of the SST features of the eastern half of the South Equatorial Current (5"N to 5"S, 80"W to 
180"). In addition, the island rainfall and SST relationship previously reported by Bjerknes (1 969) 
also show good qualitative agreement with the 5"N to 5"s SST anomalies (Figure ? 5). Ccnventional 
monthly surface cloud amounts observed at Canton Island (Figure 15) and satellite-derived monthly 
cloudiness (Figure 16) over the tropical Pacific islands (1 70"E to 160"W) also show a fair relationship 
with the 5"N to 5"s SST anomalies; i.e., heavier cloud cover and rainfall generally occur with warmer 
SST's. 

In order to study the apparent oscillations in the general atmospheric circulation shown by 
changes in cloud cover in periods prior to 1962, monthly rainfall data were analyzed for eleven Central 
Pacific islands (Quinn and Burt, 1970). These rainfall data, which were studied statistically by Doberitz 
(1968a and 1968b) for the islands located in Figure 6, had shown a definite coherence in periodicity. 
Apparently, the rainfall over the tropical Pacific islands responded to the SST pulsations in the South 
Equatorial Current during their long period of record. Twelve-month running means were made from 
all coincident monthly averaged rainfall records from 1949 to 1970. A strong pattern similarity (Fig­
ure 17) was noted between the tropical island rainfall and SST anomalies for 5"N to 5"S, 180" to 
80"W. The results of a statistical comparison of these two parameters for six oceanographic regions 
are shown in Table 3. The high correlation coefficients (>+0.90) show that the variation in SST is 
an excellent indication of tropical rainfall and cloudiness. In the 5"N to 5"s region, for example, 
increases in rainfall followed the corresponding increases in SST by 1 month.* 

*P. R. Rowntree, "The Influence of Tropical East Pacific Ocean Temperatures on the Atmosphere", Meteorological Office, Bracknell, 
United Kingdom, unpublished article, April 1971. 
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Figure 10-SST anomalies from 1949 to 1970: (a) 20"N to 30°N, entire Pacific yearly 
mean (Namias, 1970); (b) 10"N to 20"N. 80"W to 180", 3-month mean; (c) 0" to 10"N. 
8OoW to 180°, 3-month mean; (d) OoN to lo's, 8OoW to 180°, 3-month mean. 
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Figure 12-Tropical Pacific Ocean: percent of area covered by a positive SST anomaly (weighted) for (a) 1O"N to 20°N, 
9O"W to 180"; (b) 0" to  10"N. 80"W to 180"; and (c) 0" to  10"s. 80"W to 180". 
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Figure 14-(a) SST anomalies for Canton Island (monthly mean) from 1950 to 1967 (Christmas Island data were 
inserted from 1967 to 1970); (b) SST anomalies, 5"N to 5"S, 8OoW to 180". 3-month mean from 1950 to 1970. 

Table 3-Correlation coefficients Y and lead/lag for SST anomalies and tropical island rainfall for six 

~.. _ _ _ _ 
+0.75 -2 

0"-10"s +0.90 -1 
5ON-5"S +0.93 -1 
0"-10"N +0.92 -1 
5ON-15"N +0.78 +1 

___ 

IO"N-20"N 

oceanographic regions. 
_. - - __ - .- - _-

Anomalies Correlation Coefficient Month Lead/'Lag* 
~____ 

-
+0.62 -r +2 

­-

*The entry -2 means the rainfall lags the SST anomalies by 2 months, etc. 
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Figure 15-(a) Mean monthly cloudiness (surface observed) a t  Canton Island (in tenths) and Ocean Island (in eighths) 
from 1950 to 1967; (b) mean monthly rainfall (mm) for Canton Island and Ocean Island from 1949 to 1967; (c) SST 

anomalies (5'N to 5's. 80"W to 180°), 3-month mean from 1949 to 1967. 

It was then a simple step to use linear regression techniques (Panofsky and Brier, 1963) to derive 
SST anomalies (Figure 18b through 18d) for three latitude bands (0" to lO"S, 0" to 10"N, and 10"N 
to 20"N) back to 1905. The validity of this approach was checked by climatological records in two 
ways. Figure 18a through 18e shows that 5 out of 7 years of "El Nino" occurrences were indicated by 
anomalously warm periods in the derived SST data (Quinn and Burt, .1970; Bjerknes, 1966b; Berlage, 
1966; Wooster, 1961a). A second check involved the favorable comparison with SST anomalies at 
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Figure 16-(a) Satellite-derived cloudiness (monthly) 160"W to 170"E, 5"N to 5"S, 
from 1962 to 1969, and Canton Island surface-observed cloudiness (monthly) from 
1961 to 1967; (b) SST anomalies, 5'N to 5"S, 80"W to 180°, 3-month, and percent of 
area covered by a positive SST anomaly (weighted), from 1960 to 1970. 

United States west coast stations (Roden and Reid, 1961) and Puerto Chicama, Peru, which are 
affected by the coastal upwelling in the California Current and Peru Current (Wooster, 1961b). By 
the use of the same linear regression techniques, the North Pacific 700-mb positive height anomalies 
(in percent of area covered), 30"N to  40"N, 180" to 130"W, were also derived back to  1905 from the 
long record of tropical island rainfall data. Figure 18f through 18i shows the above-mentioned param­
eter, the Palmer Drought Index for western Kansas (Palmer, 1 9 6 9 ,  and the derived SST anomalies 
(10"N to 10"s). Note the close occurrence of cold SST and 700-mb positive height anomalies and 
severe United States drought, in particular during 1932 to  1938, 1954 to 1956, and 1916 to 1917 
(Namias, 1960). 
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Figure 17-(a) Tropical Pacific Island rainfall (mm), 150"W to 165"E, 5"N to 5"S, 12-month running mean from 1949 to 1969; (b) SST 
anomalies, 5"N to 5"S, 80"W to 180", 12-month running mean from 1949 to 1969. 
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Figure 18-(a) United States west coast station (40"N to 33"N) SST anomalies, from 1917 to 1948, 12-monthrunning mean; (b) derived SST anomalies, 
10"N to 20"N, 180" to 9O"W, from 1905 to 1948, 12-monthrunning mean; (c) derived SST anomalies, 0" to 10"N, 180" to 80"W, from 1905 to 1948, 
12-month running mean; (d) derived SST anomalies, 0" to lo's, 180" to 80"W. from 1905 to 1948, 12-monthrunning mean; (e) Puerto Chicama SST 
anomalies from 1925 to 1948, 6-month running mean; (f) derived North Pacific 700-mbpositive height anomalies, 30"N to 40"N, 180" to 130"W, from 
1905 to 1957, in percent of area covered; (9) monthly Palmer Drought Index for western Kansas (0 to -5 only) from 1905 to 1957; (h) derived SST 
anomalies, 0" to 10"N, 180" to 80"W, from 1905 to 1957, 12-monthrunning mean; (i)derived SST anomalies, 0" to lo's, 180" to 80"W. from 1905 to 
1957, 12-monthrunning mean. 
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RESULTS OF THE STATISTICAL ANALYSIS 

Many geophysical records show a definite seasonal and/or annual variation which can be of such 
a large magnitude as to  obscure important long-term cycles of a smaller magnitude. This creates a need 
for filtering out the annual cycle without losing useful information or introducing misleading statisti­
cal errors. Early in this project, the decision was made to use 12-month equally weighted running 
means (EWRM), a smoothing technique that is widely used in climatological research (Appendix C 
contains a justification of its use in this project). 

The main tool used in the statistical examination of the data was the Autocovariance and Power 
Spectral Analysis (APSA) program, published April 20, 1966, by the Health Sciences Computing 
Facility at the University of California, Los Angeles (see Appendix C). Tables 4 to 6 list the total num­
ber of monthly and linearly interpolated observations of the parameters used in the statistical analysis. 
The first parameter to  be correlated by the APSA program was satellite-derived cloudiness (26/ 10) 
for 30"N to 25"s from 1962 to  1970. The results are listed in Table 7. In this table, a -4 under the 
lag column, for example, means that the parameter at the top of the table lags the compared parame­
ter at the side by 4 months. A +4 implies that the top parameter leads the side parameter by 4 months. 
The correlation coefficients that are 2 0.70 are underlined to indicate the more significant relation­
ships (see Appendix C). The first impression that one gets from Table 7 is that the Northeast and 
Southeast Pacific cloud bands appear to be positively interrelated. Over 65 percent of the correlation 
coefficients are 2 0.65, with a very short response time of 2 1 to  2 months. The cloudiness in the 20"N 
to 30"N and 0" to  1O"N regions is more closely related to Southern Hemisphere Cloudiness than it is 
t o  any other region. 

As a further check on this interesting relationship, 12-month running means of satellite-derived 
cloudiness for quadrants over the entire tropical Pacific Ocean (130"E to 100°W, 30"N to 25"s) were 
plotted (Figures 19a and 19b). The Equator and 180" meridian divided each quadrant analyzed. The 
high correlation coefficients (Y = +0.80 to +0.93) and short (k3-month) lag which relate each quad­
rant's cloudiness are listed in Table 8. A single EWRM curve for the entire tropical Pacific Ocean 

Table 4-Monthly and linearly interpolated observations of satellite-derived 
cloudiness over the eastern tropical Pacific Ocean (l00"W to 180").

i-­ ~ .- .. . 

Satellite-Derived Cloudiness 
Monthly

Observations 
Linearly 

Interpolated 
Observations 

---

2OoN-30"N 34 99 
10"N-20°N 34 99 

5ON-15"N 34 99 
O'N- 10"N 34 99 
5"N-5"S 34 99 
0"-10"s 34 99 

10"s-20"s 34 99 
2OoS-25'S 34 99 

~~ ~ 
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-- 

Table 5-Monthly and linearly interpolated observations of SST anomalies 
(SOOW to 180"). 

Sea Surface Temperature Anomalies 

U.S. West Coast Stations 
20°-30"N 
10"-20"N 
5ON-15"N 
0"-10"N 
5ON-5"S 
0"-10"s 

~ 

NE Pacific-SLP anomalies 
700 mb Height anomalies

I 

Monthly
Observations 

624 
36 (3 mo. mean) 
60 I 1  

60 I 1  

60 I t  

I 160 
60 11  

Linearly
Interpolated 

Observations 

624 
108 
240 
240 
240 
240 
240 

LinearlyMonthly InterpolatedObservations Observations 

240 240 
240 240 

SE Pacific-Area covered by? 1020 mb 30"-40"s 147 147 
at sea level* 180"-75"W 
-I 

Juan Fernandez I sea level pressure 677 677 
Darwin, Australia sea level pressure 677 677 
Tropical Pacific island rainfall 677 677i ~~ 

Obtained from Deutscher Wetterdienst, 1956-1970. 

cloudiness is shown in Figure 19c. A possible explanation for the apparent in-phase relationship be­
tween the cloudiness variations in the four Pacific quadrants may lie in the effect of the Southern 
Oscillation, a large surface-pressure pulsation common to the Pacific and Indian Oceans, described by 
Troup (1 965), Berlage (1 966), Bjerknes (1 969), Walker and Bliss (1 932), and Kyle (1970). (A brief dis­
cussion of evidence of a satellite-derived global tropical cloudiness oscillation is found in Appendix D.) 

Next, the SST anomalies were correlated from the United States west coast stations (33"N to 
40"N) through the tropical ocean bands to  0" to  40"s along the South American west coast. Figure 
20 shows the interesting similarity in the warm and cool patterns through each latitude band over this 
vast stretch of the eastern Pacific Ocean. Table 9 confirms the areal coherence and positive relation­
ship between these sectors. Approximately 60 percent of the correlation coefficients were >0.65 
with a short response time o f f  1 to  3 months. The 0" to  1O"N and 5"N to  15"N SST bands are more 
closely related to Southern Hemisphere SST bands than they are to any other band. 
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Table 	7-Correlation coefficients r with lag for various regions for satellite-derived cloudiness (per­
cent of area covered by >6 /  10 cloudiness) over the eastern tropical Pacific Ocean. 

Satellite-Derived Cloudiness (Percent of Area Covered by ? 6/10 Cloudiness) 
over the Eastern Tropical Pacific Ocean 

10"-20"N llag I5"-15"N llag I0"-10"N [lag15"N-5"S Ilag O"-IOOS [ lag 1 0 0 - 2 0 ~ iI la1 20"-25"S I lag 

c0.82 

+0.82 +1 

- 0 c0.92-0.71 ~.. 

+0.93 c l  

1c0.87 +1 t-0.65 
f r ­

20"-25"s ]+0.63 +1 +0.63 

-1 +.0.71 o e -1 +0.76 - 2  +0.68 -1 +0.87 - :  +0.63 -1 

c0.92 O M c2 c0.66 +2 c0.66 c4 c0.69 +: ~0 .63  -1 

0 10.75 c l  c0.40 +1 +0.38 +3 c0.60* +; 

-2  co.75 -1 c0.80 -1 +0.67 +1 +I +0.63 -1 

-2 c0.40 -1 i.0.80 C l  +1 ~ 0 . 6 3  + 2  

- 4  +0.38 -3 10.67 -1 i-o.96 -1 t0.60 + I  -0.30 -9 

-2  c0.60 -2 -1 cO.63 -2 b0.60 -1 

+1 -1.0.77 +I 10.63 c l  -0.40 c9 -0.30 +9 t0.75 + I  
~ 

Table 8-Correlation coefficients Y with lag for satellite-derived cloudiness @ 6/10) for various 
quadrants of the tropical Pacific Ocean. 

- -.. 

NE Pacific SW Pacific 
_ _  _ _  

+0.84 0 +0.87 0 
- -~ . 1 -

___­

+0.87 -1 

- 3  +0.92 -3 
~~ . - ._ _- _­

+1 1 +0.92 
L 


The SST anomalies were next correlated with the satellite-derived cloudiness from 30"N to 25"s 
in the eastern Pacific (Table 10). (See Appendix C for an explanation of the double correlation values 
present in Table IO.) Two correlations appear in this table that seem to  have importance. Approximately 
50 percent of the correlation coefficients are negative and 2 0.65. A simple description of this relation­
ship would be that cool SST follows heavy cloudiness by a -7- to -9-month lag. This effect occurs 
mainly over the 5"N to 15"N, 0" to 1O"N oceanic bands and along the United States west coast and is 
related to cloudiness on both sides of the Equator. Bjerknes' (1969) description of the localized Hadley­
cell circulation in the eastern Pacific could be a possible dynamical explanation for this negative cloud-
SST correlation with slow feedback loop. 

A smaller group of positive correlations (approximately 20 percent of the total) varying from 
+0.45 to +0.87 with generally a +3- to +%month lead, was also found in the data. This would relate 
increased cloudiness with warmer SST's and vice versa; however, this effect was not dominant in the 
region of the Pacific. Figure 20 graphically illustrates these two air-sea interaction effects. Note the 
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Figure 19-A comparison of satellite-derived cloudiness in percent of 
area covered by 2 6/10 clouds over (a) the  Northeast Pacific (0" to 
30"N) and Southeast Pacific (0" to 25"S), (b)  the  Northwest Pacific 
(0" to 30"N) and Southwest Pacific (0" to  25"s) (the 180" meridian 
divided the  east and west quadrants), and (c) the  entire tropical 
Pacific Ocean (130"E to 100°W, 30"N to 25"s). In te r im months 
were linearly interpolated and then plot ted in the  12-month running 
means above. 
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Figure 20-A comparison of 12-month running means of satellite-derived 
cloudiness (in percent of area covered by 2 6/10 clouds) from 1962 to 1970 
and SST anomalies from 1949 to 1970. 
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-9.~t0.13 

Table 9-Correlation coefficients Y with lag for SST anomalies. 

Sea Surface Temp
Anomalies 

33"-40"N 
(U.S. West Coast) +0.65 -8 m 7 -1 += 0 += +2  +0.62 + 3  +0.61 +4 +0.53 

I 2 0  -30 N 10.65 * 8  += + 3  ~ 0 . 3 5  0 -0.25 +8  -0.35 +8 -0.35 -5 -0.59 

I10'-20'N + E 7  +1 +0.77 -3 +- 0 10.66 14 +0.63 + 3  +0.53 +5  +0.46 

I5"-15'N +- 0 +0.35 0 +m 0 +0.92 +1 +- t l  10.79 + l  +0.62 
-

[0"-10"N - 2  -0.25 -8 10.66 -4 9 -1 +- o+= o+= 
5'N-5'S +0.62 -3 -0.35 -8 +0.63 -3 G 9  -1 +m 0 *0.98- 0 +E 
O " - l O ' S  t0.61 -4 -0.35 +5 +0.53 -5 +- -1 t- 0 += 0 

0'-40"s 
(S.A. West Coast) +0.53 -6 -0.59 -7  +0.46 -5 +0.62 -3 += -1 += -1 +m -1 

Table 10-Correlation coefficients Y with lag for SST anomalies vs. satellite-derived cloudiness. 

(S.A. West Coast)4lag 

-

.­5"-15'N i-0.69 - 7  10.35 + 3  +0.66 *3 -0.70 -9 -0.87 -8 -0.85 -8 -0.92 -8 -0.69-

0"-10"N 1-0.74 
-9 +0.02 t l  t0.42 + 3  

-_O= -9 T,":,"," T: -0.61 -9 -0.66 Ti -0.39 --j-0.13 -9  -o.49 
-0.50 -95 "N-5 "S -0.89- -'1-0.36 +5  -0.69 -8l-0.71 -9 -0.39 -8 -0.35 -9 -0.33 -8 10.45 

I
O"-lO'S -0.81- -9!-0.49 +6 -0.53 -8 

t 
-0.59 -0.33 -:-0.37 -9 -0.30 -8 -0.41 

1 ~ 

10'-20'S t0.52 +4'+0.36 - 4  -0.61 -8 -0.54 -8  

-0.84 - 8 - 0 . 8 0  -8  

depressed cloudiness in the presence of warm SST anomalies from 5"N to 10"sduring the winter of 
1966, which was reported by Krueger and Gray (1969), and the increased cloudiness at 10"s to 25"s 
in the presence of cool SST anomalies of the Peru current. The presence of dense stratiform clouds in 
this region has been noted in daily ATS 3 and ESSA-ITOS cloud photography (U.S. Department of 
Commerce, 1970b; Goddard Space Flight Center, 1969a and 1969b). 

Tables 11, 12, and 13 correlate the Northeast Pacific anticyclone surface pressure anomalies, 
700-mb height anomalies, the percent of area covered by 2 1020 mb in the region 30"s to  40"S, 140"W 
to 100"W (South Pacific anticyclone), Juan Fernandez Island and Darwin surface pressure, and tropi­
cal Pacific island rainfall with sea surface temperature anomalies (Table 11), satellite-derived cloudiness 
(Table 12), and each other (Table 13). 

Three interesting features shown in Table 11 are the crossequatorial relationship between the 
Northeast Pacific 700-mb height anomalies (see Figure 5), the Darwin and tropical island rainfall, the 
surface pressure, and the SST anomalies. Since these data are based upon 20 years of record, the 
authors feel that these positive and negative correlations are highly significant and useful for meteoro­
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Table 11-Correlation coefficients (Y) with lag for various parameters with SST anomalies. 

30"-40'N 30"-40"N 3O0-4OoS TropicalSea Surface Temr (NE Pacific) (NE Pacific) (SE Pacific) Fernandez Darwin Pacific I.Anomalies Surface P r e s s u r e  lag 700 mb HT. lag Surface Pressure  lag Surface P r e s s u r e  lag Rainfall lag
~. ­

33O-40" 

(US.Wes: Coast) -0.68 + f  -0.68 +E -0.41 +5  -0.43 + 3I+0.59 C 


20°-30"h -0.69 + E  -0.41 +E -0.55 -8 +0.64 -5 -0.60 +8 

10°-20'N -0.72 +'i -0.73 +9 -0.34 zi: -0.61 +5 t0.56 +2 
~ - -0.69 

5"-15'N -0.74 +'i -0.74- +E -0.56 c5 -0.66 1 3  + O Z  C-

05-10"N -0.67 +� -0.74 +6 -0.67 +4  -0.69 +z +E - 1  
~ 

5"N - 5's -0.56 +�  -0.72 +6 -0.71 + 3  -0.64 +2 += -1 

O"-lO"S -0.51 +5 -0.70 +5 -0.66 + 3  -0.63 +2 +=2 - 2  
~ 

0"-40"S 
(S.A. West Coast) -0.36 +4 -0.56 +4  -0.51 +1 -0.52 -31+0.75 -2I I __ 

Table 12-Correlation coefficients (Y) with lag for various parameters with satellite-derived cloudiness 
(26/10). 

I=-
Satellite- Derived 30'-40"N 

Cloudiness (2 6/10 
30"-40"N 30"-40"S Darwin Tropical 

Surface Pressure  lag 
Pacific I. 

lagRainfall I 1  
I20"-30"N +0.39 -8 +m - 4  +OX5 -8 +0.54 +: -0.55 - t  -0.41 -8) 

10"-20"N +0.53 -1 +e - 2  +0.67 -4  +0.37 -4 -0.84 - E  -0.73 -9 I 
t0.36 0 +0.62 - 2  += -5  +0.48 - 4  -0.78- - B  -0.79 -91 

-. 

O"-lO"S +E -7 +E -7 t0.27 + 4  +0.29 +8 +0.22 -1 -0.20 -9 I 
0"-10"N c0.48 -5  +g -5 +0.60 -4  +0.33 + 3  -0.59 - E  -0.55 

-9 I-~ 

C G -7 +=9 -6 +0.26 + 3  +0.27 +a -0.33 -9 -0.25 
-9 I 

-0.52 +9 10.73 -7 +0.65 -6 +0.51 -7 -0.67 -9 -0.44 -8 I 
/20"-25"S -0.55 +9 -0.60 +9 -0.80 -5b0.68 -7 -0.83 -9 -0.74 -81 

~ 

-~ .~ -

logical and oceanographic prediction. It was noted also that the Northeast Pacific surface pressure 
leads the 5"N to 20"N SST's by 7 months, whereas the Southeast Pacific surface pressure had a shorter 
(3-month) lead time in its effective region. The faster wind-stress coupling time could be explained by 
the greater seasonal stability and size of the South Pacific anticyclone as compared with those of the 
North Pacific anticy clone. 

Table 12 indicates the good correlations shown by the Northeast Pacific 700-mb height anomalies 
and crossequatorial satellite-derived cloudiness, but since the period of record is only 9 years, the con­
fidence level is lower than shown for Table 11. Note the consistent fiegative correlations (- 0.73 to 
-0.84) between Darwin surface pressure, tropical rainfall, and 5"N to 20"N cloudiness. 
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Table 13-Correlation coefficients (Y) with lag among various parameters. 

30"-40"N 30"-40"S 
(NE Pacific) [NE Pacific) (SE Pacific) Juan Fernandez Darwin1Surface Pressure I lap loo m b  HT. lag Surface Pressure lag Surface Pressure !lag Surface Pressure la� 

I 30"-40"N 

(NE Pacific) 

Surface Pressure 


I30"-40"N 

(NE Pacific) 

IO0 mb HT 


30"-40"S 

(SE Pacific) 

Surface Pressure 


Juan Fernandez 
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Table 13 indicates the good positive correlation (+0.80) between the Northeast Pacific surface 
pressure and 700-mb height anomalies (see Figure 2). This maritime relationship had been noted pre­
viously by Klein (1967). In addition, tropical Pacific island rainfall related positively (Y = +0.80) with 
Darwin surface pressure (Figures 21 and 22). This useful meteorological relationship implies a cross-
equatorial coupling that has not been completely described dynamically in the literature (Quinn and 
Burt, 1970). 

CONCLUSIONS 

SST variations in the California and Peru Currents from 1949 to  1970 have been traced from the 
west coasts of North and South America, respectively, to the central tropical Pacific Ocean by means 
of a newly produced atlas of SST anomalies (Appendix A). These SST anomalies did indeed show a 
strong relation to Canton Island SST data, as was hypothesized by Bjerknes in 1966 (Bjerknes, 1966b). 

Tropical Pacific rainfall was found to be strongly correlated with tropical SST anomalies (Y =+0.93), 
and by use of this direct relationship, it was possible to  derive tropical SST anomalies back to  1905, a 
period of sparse oceanographic data. The relationship between cold tropical SST and North Pacific 
700-mb positive height anomalies and central United States drought was noted. 

The Northeast Pacific 700-mb height field (30"N to 40"N) was found to  be positively correlated 
(Y = +0.73 to  +0.89) with satellite-derived cloudiness from 30"N to 20"s and negatively correlated 
(r = -0.70 to  -0.74) with SST anomalies from 20"N to 10"s. 

The tropical SST's were negatively correlated with and lagged the satellite-derived cloudiness 
from 20"N to lo's, implying the presence of a localized Hadley circulation, previously suggested by 
Bjerknes (1969). The Eastern Pacific SST bands and coastal waters showed a close areal coherence in 
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Figure 21-A comparison of 12-month running means of (a) tropical Pacific island rainfall (see Figure 6) and 
(b) Darwin, Australia, surface pressure from 1904 to 1928. 

temperature pattern from 40"N to 40°S, and the satellite-derived cloudiness over the entire Pacific 
appeared to be pulsating in resonance. A similar global tropical cloudiness pulsation was noted over 
the Pacific, Atlantic, and Indian Oceans from J. C. Sadler's monthly satellite nephanalyses.* 

The South Pacific anticyclone appeared to couple faster (3-month lead) through wind stress to 
the sea surface than the North Pacific anticyclone (7-month lead). 

Tropical Pacific island rainfall was well correlated with Darwin surface pressure ( Y  = +0.80) and 
implied a local atmospheric coupling, which has not been completely documented in the literature. 

This study has shown the various time frames of direct local and crossequatorial air-sea relation­
ships which exist over the tropical Pacific Ocean. With further analytical refinement, several of these 
geophysical parameters could become useful for seasonal meteorological and oceanographic prediction. 

*J. C. Sadler, University of Hawaii, Honolulu, unpublished data. 
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Figure 22-A comparison of 12-month running medns of (a) tropical Pacific island rainfall (see Figure 6) and (b) 
Darwin, Australia, surface pressure from 1929 to 1953. 
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Appendix A 

Sea Surface Temperature 
Anomalies Over the Eastern 

Tropical Pacific Ocean 
( 1949 to 1970) 

Charts of 3-month SST anomalies over the eastern tropical Pacific Ocean for March 1949 to 
November 1970, in chronologicai order. Shaded areas indicate positive anomalies. Long-term mean 
SST’s for December to February, March to May, June to August, and September to November are 
presented at the end of this appendix. The first three numbers in each column represent the respective 
values at that location for the three months at the bottom of each figure. The fourth number is the 
seasonal mean. 
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Appendix B 

Satellite-Derived Cloudiness and 
Sea Surface Temperature Anomalies 

Over the Tropical Pacific Ocean 
(1962 to 1970) 

A comparison of satellite-derived monthly cloudiness (in percent of area covered by 2 6/ 10 
clouds) and 3-month SST anomalies (weighted) from 1962 to 1970 for the regions indicated in each 
figure. 
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Appendix C 

Statistical Techniques 

The use of 12-month equally weighted running means (EWRM)as a smoothing technique is com­
monplace in climatological research; however, their use introduces one unfortunate property. As can 
be seen in Figure C1, there is a polarity reversal at  point A ,  which. can produce erroneous frequencies 
in a spectral analysis. A solution to this problem would be to place all the data to be studied in an 
anomaly format by using long-term means from the data. The monthly mean represents the annual 
cycle, and its subtraction from the long-term mean should eliminate this regular cycle. A plot of the 
monthly anomaly data proved too noisy, so the EWRM technique was utilized. 

Another smoothing technique was tested to see if the polarity reversal effect was indeed damag­
ing to the data analysis. Two parameters, Darwin monthly surface pressure and tropical island monthly 
rainfall for 30 years of record, were put into anomaly form by using long-term means from the data. 
Then a normal curve-smoothing technique was applied. This technique does not introduce the polarity 
reversals or phase shifts found with exponential techniques, I t  makes use of unequal weighting factors f 

+’” k\:REQUALLY WE I GHTED j 

Lu 

v)
Lu 
U 


-0.5 


1 
NORMAL CURVE 

SMOOTHING FUNCTION ­
‘4 
 -\‘. 

-I 

0.0 1.o 2.0 

FREQUENCY IN CYCLES PER FILTERING INTERVALT 

Figure C1-A comparison of the EWRM and normal curve-smoothing 
techniques. Polarity reversal is known at point A.  
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which are computed by 

where N = 12 and m = 0, 1, 2, . . . ,12. After smoothing in this manner was completed, the results 
proved highly comparable with the data processed by the EWRM technique (Table Cl). 

As can be seen, there was only a small reduction in the correlation values when the normal curve-
smoothing technique was used. Similarly, the lag value for both cases was the same. Given the long 
length of record used, it now appears that the polarity reversal was of such a minor nature as not to be 
of any significance. The EWRM technique was then accepted as valid for this research study. Figure C2 
shows an example of the monthly and 3-month formats for SST anomalies (0’ to 10’N) and the final 
EWRM format that was used in the APSA program. 

One of the useful features of the APSA program was the calculation of the autocovariance of each 
data set from zero to some stated number of lags in both a positive and negative direction. Normally, 
10 percent of the total number of data points were used to establish the lag limit. Examination of the 
autocorrelation versus the lag curve then gave a good indication as to the success of efforts to remove 
regular trends such as the annual cycle. If everything appeared to be in order, the square root of the 
autocovariance at zero lag was taken to give the standard deviation for the individual series. A second 
feature of the program then crossed the designated base series (1) with another series (2) in both a posi­
tive and negative direction out to the number of lags used for the autocovariance calculations. 

Crosscovariance values were then calculated at each lag point for the two series being crossed. Ex­
amination of plots of crosscovariance values versus lag values for any two series allowed selection of the 
most significant lag point. The final step was the hand calculation of the correlation coefficient. In this 
paper, the correlation values shown in Tables 7 to 13 represent crosscovariance values for two series at 
a selected lag, divided by the multiple of the standard deviation of both series. 

Figures C3 and C4 present the printout of the APSA program to illustrate how the correlation 
coefficients and lags in Table 10 are determined for satellite-derived cloudiness and SST anomalies, 

Table C 1-A comparison of Darwin monthly surface pressure versus monthly 
tropical rainfall anomalies as computed by two statistical techniques. 

I Correlation Coefficient (r) 1 Lag (months) 

+0.80 0 
running means 

Normal curve smoothing +0.74 0 
of anomalies 

~ 
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using the relationship 
crosscovariance 

r1,2 = 7 

SlS2 

where 

r1,2 = correlation coefficient for the two series, 

S ,  = standard deviation for series 1, 

and 

S2 = standard deviation for series 2. 

A number of squares in Tables 10 and 11 list two correlation values instead of one. When two 
series that follow a sine function are correlated, it is expected that two points of greater correlation 
will be seen. The true relationship of the two series is often marked by the greater degree of correla­
tion, such as that shown in the lower right-hand quadrant of Figure C3 = -0.92). However, in 
some cases, two weak correlations can occur (r = +0.42, -0.49 in Table 10). Without prior knowledge 
of the situation, it is difficult to separate the true relationship from its mirror image on the basis of 
two correlations only. In these cases, both correlations have been presented to allow the reader to 
examine both possible relationships. 

Statistical confidence in the worth of any correlation value depends on the number of independ­
ent observations that make up the data sets. Since a wide range of record lengths was used in this 
study, no speciai set of confidence limits was established. However, the shortest record contained 34 
observations, and, therefore, these data can be used to establish a tentative acceptance level. If the 
value of 34 is used and independence is assumed, it can be shown that a correlation that explains 50 
percent of the variance between two series would definitely be statistically significant. Therefore, 
correlation values of about 0.7 or better are used as a guide to the more important relationships. 

The use of smoothing and extrapolation techniques that were used before the statistical analysis 
of the data raise some question as to the absolute validity of the correlation and lag values. One ex­
ample that is readily apparent is that the beginning and end of trends can be easily smeared in a EWRM 
series. The lag values could thus be easily off one to two months in either direction. The correlation 
coefficients themselves also show a variation due to the EWRM smoothing used and should not be ac­
cepted as absolute values. However, since this EWRM smoothing was used throughout this study, all 
correlation coefficients and lags can be compared in a relative sense. 
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Appendix D 

Sate1Iite-Derived Global Tropical 
Cloudiness Oscillation 

With the discovery of an apparent in-phase relationship between the satellite-derived cloudiness 
variations in the four tropical Pacific quadrants (Figure 19), a brief study of global tropical cloudiness 
through the use of J. C. Sadler's monthly satellite television nephanalyses* was undertaken. Figure 
D l a  through D l c  shows 12-month running means of cloudiness (>4/8) over the tropical Pacific, 
Atlantic, and Indian Oceans, 30°N to 30°S, in percent of area covered. A simple monthly count of the 
total 2.5-degree squares covered by 4/8 cloudiness and greater was made for the period February 1965 
to January 1970. A strong maximum cloudiness in early 1966 and 1969 and minimum in early 1968 
occurs in all three data sets. Figure D1 d shows the 12-month running mean of the 50-mb temperature 
at Balboa, Canal Zone. Note the strong similarity between this temperature (with 6-month lag) and the 
above tropical cloudiness. Figure D2 shows a similar relationship between the 12-month running means 
of global tropical cloudiness (over all three tropical oceans) and the 50-mb Balboa temperature 
(Biennial Oscillation). 

Figure D3 also shows a close relationship between 12-month running means of tropical Pacific 
and Atlantic SST anomalies and cloudiness from J .  C. Sadler's monthly satellite television nephanalyses. 
Apparently, from this limited study, the tropical Pacific and Atlantic SST's and cloudiness are oscilla­
ting in phase, with a 4- to 6-month lag in cloudiness. A study of the tropical Indian Ocean SST's and 
cloudiness will be the subject of future research. 

Definite evidence of television system degradation has been noted in the TIROS and ESSA series 
of meteorological satellites.** This knowledge has prompted, in part, the switch from vidicon systems 
to  scanning-radiometer techniques in the visible spectrum for future satellites in the ITOS D and SMS 
series. The variable response of the vidicon system in producing the daily television pictures may have 
induced an error in the monthly satellite cloudiness data that are described in the main body of the 
report and in this appendix. 

*J. C. Sadler, University of Hawaii, Honolulu, unpublished data. 
**T. I. Gray, NESS, and A. Schwalb, NOAA, private correspondence. 
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Figure D1-A comparison of 12-month running means of satellite-derived 
cloudiness in percent of area covered by >4/8 cloudiness over (a) the 
tropical Pacific Ocean (30"N to 30"S, 130"E to 1OOoW), (b) the tropical 
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Figure D3-A comparison of 12-month running means of SST anomalies over 
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